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Structural properties and quasiparticle band structure of zirconia
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We reportab initio calculations of the structural and quasiparticle properties of,Zdtherwise known as
zirconia. The plane-wave pseudopotential method is used to compute the structural properties of the cubic,
tetragonal, and monoclinic phases of zirconia. Oxygen vacancies in the cubic phase are also studied using a
supercell approach. The structural parameters, including all internal degrees of freedom of all phases, are
relaxed. Excellent agreement is achieved with experiment and with athanitio calculations available. We
compute the quasiparticle band gaps within Hedi®¥/ approximation using the method of Hybertsen and
Louie, and confirm that the quasiparticle approach can be successfully applied to transition-metal oxides if the
core-valence overlap is small. We predict the fundamental gap of pure cubic, tetragonal, and monoclinic
zirconia to be 5.55 eV, 6.40 eV, and 5.42 eV, respectively. WithirGhé approximation, the oxygen vacancy
state in the cubic phase is found to be nondegenerate, fully occupied, and well separated from the valence and
conduction bands, positioned 2.1 eV below the conduction band g8§£63-18208)00112-X

I. INTRODUCTION use the calculated pseudo wave functions to compute the
quasiparticle band structure of cubic zirconia with A&V
Zirconia is a technologically very important matetial ~approximation. Our work is of particular theoretical impor-
which can be used in practical applications not only as dance because it constitutes one of the B8 calculations
structural ceramic but also, for example, as an importanfor systems in whichl-electrons play an important role, and
component in catalytic converters, in oxygen sensors, and iit sheds light on the applicability of th& W approximation
chemically passivating surfaces. The latter applications reto such systems. Successful first-principles quasiparticle cal-
quire a thorough understanding of the electronic propertiesulations on transition-metal compounds have been per-
of this material. formed only recently=*? Finally, we study the electronic
The electronic and structural properties of zirconia havestructure of an oxygen vacancy in cubic zirconia. Oxygen
been studied before in detail within thab initio density- vacancies are believed to be instrumental in the structural
functional-theory—local-density approximatiéBFT-LDA)®  stabilization of zirconia. They also make zirconia useful as
andab initio Hartree-Fock methods. However, these meth- an oxygen ion conductor.
ods are known not to be predictive for excited state proper-
ties such as the band gap. Clearly, for an understanding of
the chemical and electronic properties of zirconia, a predic-
tive calculation of its excited state properties is necessary.  Structural properties of ZrD are determined using
The GW approximation for the electron self-energy, first density-functional theory within the local-density approxi-
described systematically by Hediand first developed as a mation (LDA).**'* We expand the valence pseudo wave
practical computational approach for real materials by Hy-functions in a plane wave basis set up to a cutoff of 100 Ry
bertsen and Loui&! is the state-of-the-art method for pre- to obtain fully converged results. This corresponds to ap-
dictive calculations of the band gap and of other excited-statgroximately 16 000 plane waves for the monoclinic phase,
properties. It has yielded excellent results for semiconductorgshich has the largest unit cell. Brillouin zone summations
and insulator§.However, until recently the method has re- are carried out using a Monkhorst-Pack grid with ten, six,
mained to be proven valid fod-electron systems, such as and twok points in the irreducible zone for the cubic, tetrag-
ZrO,. Motivated by the recent success of Rohlfing, Kruger,onal and monoclinic phases, respectively. The plane-wave
and Pollmann for Cd8we applied theGW method for cal-  cutoff and k-point sampling are sufficient for full conver-
culations of the quasiparticle band structure of Zr@ur  gence in the Hellman-Feynman forces and stress. Atomic
results, as we will show below, are in good agreement withcoordinates and lattice parameters were varied until the
the available experimental data. forces and stress vanished. The structural minimization is
The paper is organized as follows. First, we study thecarried out using a quasi-Newton methi3dA fully con-
structural properties of the phases of ZM@thin the pseudo- verged, self-consistent relaxation of all the 13 structural pa-
potential DFT-LDA formalism. The success of this methodrameters of the monoclinic phase can be performed in less
in predicting structural properties of Zg@s in itself impor-  than 10 h on 32 processors of a Cray T3E.
tant, because the plane wave pseudopotential method is Throughout this study we made use of the pseudopotential
simple and very efficient in exploring structural transitions.approximation. The oxygen pseudopotentials are generated
Second, having verified the applicability of the pseudopotenusing the Troullier-Martins schertfewhereas the zirconium
tial plane wave method to the ground state of Zr@e then is treated using Hamann-Schluter-Chiang potentialBor

Il. CALCULATION OF STRUCTURAL PROPERTIES
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TABLE I. Structural properties of hcp metallic Zr. Figures in gies unless all of the strongly spatially overlapping orbitals
parentheses give the percent error as compared to experiment. Vége treated on an equal footing.
present pseudopotential LDA calculations with Ceperley-Alder

exchange-correlatiofPRCA)] (present work and all-electron lin- lll. CALCULATION OF QUASIPARTICLE ENERGIES
earized augmented plane-wave LDA with Hedin-Lundquist
exchange-correlatiofLAPW(HL)] (from Ref. 33. Volumes per In this section, we summarize the basic ideas of G
formula unit and lattice parameters are in atomic units. Experimengpproximation for quasiparticle properties. TB&V approxi-
tal data are from Refs. 34 and 35. mation was first proposed by Hedlrin practice, we follow
the scheme for semiconductors, due to Hybertsen and
PRCA) LAPW(HL) Expt. Louie®” The method is based on an approximate solution to
Volume 147.89¢5.7%  147.84-59% 15705  the quasiparticle equatith
c/a 1.629+2.3% 1.627+2.1% 1.593
a 5.940(— 2.7% 5.943(-2.6% 6.104 (T+Vext+vh)\lfnk(r)+f /S (r,r En) V(r’)
C 9.679(— 0.5% 9.668(—0.6% 9.723
=EnWnk(r), )

oxygen we make the usual choice of including the six elecwhere T is the kinetic energy operator-(;V7 in atomic
trons in theN=2 shell as valence electrons. For zirconium, Units), Ve is the externalionic) potential,Vy, is the Hartree
all electrons in theN=4 shell plus the § subshell in the potential due to the average Coulomb repulsion of the elec-
atomic configuration (4°4p®4d°5s°=12 electronsare in-  trons, ands is the self-energy operatok is in general a
cluded among the valence bands. We have tried to reduce tt@nlocal, energy-dependent, non-Hermitian operator that de-
number of valence electrons by only treating theahid 41 scribes exchange and correlatiGiressing effects on the

as valence electrons, but this leads to unsatisfactory equilifjuasiparticle states. In addition, the non-Hermitian pa& of
rium lattice parameters for cubic ZgO gives rise to a finite lifetime for the quasiparticles. Near the

For structural calculations, we further convert the semi-Fermi level, however, lifetime effects can be, and, as usual,
local pseudopotentials described above to the fully nonlocakre neglected in the interpretation of peak positions in ex-
form of Kleinman and Bylande?® The Kleinman-Bylander ~perimental excitation spectra.

(KB) form of the pseudopotentials is separable and hence The quasiparticle equation is similar to the familiar self-
allows considerable savings in computational effort. We take&onsistent field equation in the Kohn-Sham formulation of
thed and p channels as the local potentials for zirconium density-functional theoryDFT) (Refs. 13,14,

and oxygen, respectively. With these choices, the pseudopo-

tentials are transferable including the low-lying conduction (TH+Vext Vit Vi) ¥nk(1) = €ncthnk(T) @
bands(see Table)l For band structure ar@W calculations,  if we setSPA= S(r,r")Vye(r'). While the Kohn-Sham ei-
we do not use the KB procedure because of the pOSSlblllty Oéenvahjesfnk on|y have meaning as Lagrangian mu|tip|iers7
encounteringghost states® and in particular cannot be interpreted exactly as excitation

The inclusion of 4 and 4p electrons in the valence shell energieS, the above ana|ogy Suggests th@tan in fact be
of Zr is important for reasons other than their effect on theconsidered as a first approximation to quasiparticle energies.
structural properties. Even though the,4ls, and 4 atomic  (Similarly, one can consider the eigenvalues of the Hartree-
energy levels are tens of eVs apart from each other, the coEock equation as approximate quasiparticle eneigies.
responding atomic wave functions strongly overlape Fig. It is natural then to try to obtain the true quasiparticle
1). As shown by Rohlfing, Kruger, and Polimahim a case |evels and wave functions perturbatively from the Kohn-
such as this, one does not obtain accurate quasiparticle ené&ham (or Hartree-Fock eigenvalues and eigenfunctions.

Within this approach, the perturbation operator hf;
IR =3 (E)— V.. Assuming for the moment that we knady,
we can immediately write down the first-order result

< wnk|2(Enk) - chllpnk>

- 4s

i ] Ep= €nct 3
: ] R 770 ©®
~ %5r 7] In practiceH is found to be virtually diagonal in thi}
> . i basis for semiconductdtsuch as Si, Ge, Cd%and Zr0,, so
- § we in fact take
0 N W= Pk (4)
I and
_05 _| “l PR AN S T A NN T SO T R Ensznk+<l//nk|2(Enk)_ch| ‘//nk>- (5)
0 2 4 6 8 _ , _
r(a.u.) We next consider evaluating the operabr Following

Hybertsen and Louié,the operatorS (E) can be approxi-
FIG. 1. Atomic wave functions of the 4 shell of the Zr atom. mated in theGW approximation as
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do' . The first two terms of this equation are usually omitted
E(r,r’;E)=iJEe"‘s‘”G(r,r’;E—w’)W(r,r’;w’), from the calculations, because Hybertsen and Lbobave
6) found that their contributions to excitation energies differ
very little from the corresponding LDA values for bulk sili-

where § is a pOSitive |nf|n|teS|malG is our best available con and germanium_ For these cases, the pseudopotentia|
Green’s function, andlV is the best available screened Cou-was chosen in such a way that the core and valence electrons

lomb interaction. BotlG andW are evaluated with the LDA  resided on different shells, thereby ensuring a relatively

wave functions. AccordinglyG is taken to the Green’s func-  small overlap between core and valence electrons. However,
tion formed from the LDA orbitals: for the opposite case, i.e., when there is significant core-
. valence spatial overlap, the core-valence exchange-
G o= ‘ﬂnk(r)wnk.(r ) (77  correlation contributions can be important, as Louie, Froyen,

v R o—Eq— 16’ and Coheff have pointed out in their work on the nonlinear

core correction fomb initio pseudopotentials. Shirley, Zhu,

and Louié® have shown that in certain shallow core semi-
onductors, core-valence exchange-correlation effects can
hange the gap by as much as 0.4 eV. In their work on CdS,

where 6,,=0" for E,,<u and §,,=0" for E,,>u. The
e, are initially taken to be the LDA eigenvalues and are
subsequently updated upon repeated iterations of the sel

con5|ster,1i equation E¢S). . . . Rohlfing, Kruger and Pollmarirhave also shown that when
W(r.r’; ) is computed using RPA dieleqtric screening at o, 6 and valence orbitals overlap, the contributions from the
»=0, and then extended to finite frequencies using a genefsqq yalence exchange-correlation are different in LDA and
alizgdeplasmon-pole model, as despnbed by I_-|ybertsen angl GW, respectively. Motivated by these observations, we
Louie.” Before we proceed, let us fix the Fourier transformhave treated the & 4p, 4d, and 5 electrons as valence
convention for the spatial coordinates in a crystal to mean electrons for zirconium,, an,d neglected the remaining core-
valence exchange-correlation terms in the evaluation of qua-
f(r,r';w)= >, €@ @ Tf . (q,0)e (@) (8  siparticle energy differences.
q,G,G’
whereq is a wave vector in the first Brillouin zone aflis IV. RESULTS AND DISCUSSION
a reciprocal lattice vector. In terms of the LDA wave func-
tions, the RPA irreducible polarizability is givetin r,t
space by Zirconia (ZrO,) in its pure form and at zero pressure is
o . monoclinic (m) up to 1170 °C, tetragonal) between 1170
Po(r.tir',t")=—iG(r,.tir' t’+)G(r',t";r,t). (9  and 2370 °C, cubicq) between 2370 and 2706 °C, and
From this expression, the dielectric functiéin g, space ~ molten abovéf‘. Dopants such as 30;, CaO, and MgO are
known to stabilize the cubic and tetragonal phases at room
€ce (0, @)= 8gg — v (q+ G)Poeef(q!‘“) (10) tempera_ture._The (iopants introduce substiiutional impurities
at the zirconium sites and oxygen vacancies. At high tem-

A. Structural properties

can be obtained. The screened interaction is given by peratures and high concentrations, the vacancies are
H 5
1 , mobile:
Wee'(Q, @)= fGG'(q'w)UCOUI(qJFG ). (11) The high temperature phase(space grou-m3m) is an

. ) L ) fcc lattice of zirconium atoms with oxygen atoms at the tet-
_ The preceding discussion is general. In our implementazahedral sites. Consequently, the oxygen atoms and the zir-
tion, we make a further approximation and evalugfeand  ¢onjium atoms are tetrahedrally coordinated and octahedrally
Y Within a pseudopotential DFT-LDA scheme. The cqqginated, respectively, and the unit cell contains one zir-
pseudopotential approximation requires us to fix some of the nium and two oxygen atoms. The cubic structure is fully

contributions to the self-energy operator. determined by the single lattice constant.

In order to understand the approximations resulting from the intermediate temperature phase (space group
the use of pseudopotentials, let us decompBseto WO  pg. /nmg) can be derived from the cubic phase by displac-
terms,G=G.+G, , whereG, only involves the core orbit-  jnq the oxygen atoms along theaxis of the tetragonal unit
als andG, involves the rest of the valence orbitals and thecg|| This displacement is accompanied by a readjustment of
conduction states. Similarly, the polarizabili®y/ can be de-  the |attice parameters. The lattice vectors meet at right
composed into parts involving virtual transitions from core gngles, with two of them equal in length. Thephase is
bands to conduction band®{) and parts involving transi- therefore characterized by two lattice constants and the dis-
tions from valence to conduction bandB,j. AssumingP placementd, of the oxygen atoms in the unit cell with re-
<P, we get spect to their cubic positions. The unit cell contains two for-

. . . mula units of ZrQ. The mechanism of the cubic to

% =IGWHIG,W,PoW, +iG,W, . (12) tetragonal phase t%nsition is described in detail in Refs. 26
The first term corresponds essentially to the core-valence exand 27.
change energy, as noted by Phillf3sind the second term is The low temperature monoclinic phase of ZrQspace
a screened polarization potential due to the core. These twgroup P2, /c) is formed by further distorting the tetragonal
terms together correspond to a core-valence exchangstructure. With the lattice vectors no longer at right angles,
correlation energy. The third term is the self-energy of thethe zirconium atoms are only sevenfold coordinated in this
valence electrons. phase. There are two symmetry-inequivalent types of oxygen
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TABLE Il. Structural parameters of the phases Zr®he full- TABLE Ill. Cohesive energie$f.,,) of the pure phases of ZgO
potential linearized augmented plane-wave all-electron DFT-LDAgiven in Rydbergs/Zr®. The third column shows the total energy
(FLAPW) results are from Ref. 28 and the plane-wave pseudopodifference between the phases and the cubic phase. The fourth col-
tential DFT-LDA (PP results are from the present work. The ex- umn contains the corresponding experimental values from Ref. 29.
perimental results are taken from Ref. 25. The deviation from the

experimental result, expressed as a percentage, is given in parenthePhase Econ Ec—Etm Expt.
ses. Volumes per formula unit and lattice parameters are in atomic
units. Internal coordinates are given in terms of the lattice vectorsCUPIC 1.5331
In the tetragonal phase, is the displacement of the oxygen along tetragonal 1.5364 0.0033 0.0042
the z axis in units ofc with respect to the ideal cubic position. monoclinic 1.5406 0.0075 0.0088
PRthis work FLAPW Expt.
Our calculated values are in fact in excellent quantitative
Cubic ZrG, agreement with experiment. The experimental values for the
Volume 215.31¢3.2% 217.79¢-2.1%  222.48 energy differences were derived from measured enthalpy dif-
a 9.514(-1.1% 9.551(-0.7% 9.619 ferences at the phase transition temperattre.

Tetragonal ZrQ B. Electronic properties

Volume 218.69¢ 1.9% 218.77(+-1.9% 222.96
a 9.523(—0.2% 9.541+0.0% 9.543 1. Cubic phase
c 9.646(-1.5% 9.613(-1.8% 9.793 We first examine the electronic structure of the cubic
d; 0.0423(-26.3%  0.029(-49.5%9  0.0574 phase within our pseudopotential LDA method. We perform
the electronic structure calculations at the experimental lat-
Monoclinic ZrO, tice parameters. Figure 2 shows the total and partial density
Volume 230.51¢3.0% 237.71 of states for this phase. The partial density of stai#39) at
a 9.611(-1.3% 9.734 energyE at atomX with angular momenturh,m is obtained
b 9.841(-0.0% 9.849 by examining the wave functions with energy eigenvatue
c 9.876(~1.7% 10.048 The partial density of state8y,(E) at atomX and angular
y 99.21(- 0.0% 99.23 momentuml is given by
Xap 0.2779+0.9% 0.2754 vee
0.0418+5.8% 0.0395
)Z/ZZ: 0209§+07()/3 0.2083 DXI(E):% ;I:J |< 0(|r_rX|<rC)Y|m(ﬁ!l//)|wnk>|2
Xo() 0.0766+9.4% 0.0700
Yo 0.3488+5.1% 0.3317 X &(enc—E), (14
Zo( 0'3311(_3'926 0.3447 wherery denotes the position of the atom at which the par-
Xo(2 0.4471(-0.5% 0.4496 tial density of states is computed, addr—ry|<r.) is a
Yo 0.7588(-0.3% 0.7569 step function equal to unity for values of-ry| less than the
Zo(y) 0.4830(- 0.8%) 0.4792

radius cutoffr. and zero otherwise. The angular decomposi-
tion shows that the top of the valence band is formed from O
atoms, one threefold, the other fourfold coordinated. We2P orbitals and the semicore bands, in order of decreasing
need 13 independent parameters to describe this structur@lergy, are O 2 and Zr 4p bands. It is interesting to note
The data presented in Table Il for the monoclinic phase cor-

respond to the second setting convention for monoclinic B n Total I

crystals. The unit cell contains four formula units of ZrO 0 [

Table Il summarizes the results of our structural studies B

on the three phases of ZgOThere is excellent agreement —~ 0 _ Zr s
between the results of our pseudopotential plane wave 2T
method and those of the all-electron FLAPW metRd@he g o Zr p
theoretical lattice parameters are also in excellent agreement 5 [ 7 d
with experiment. The success of the pseudopotential treat- - Wb
ment is in fact not surprising given the similar success of the a L )‘h 0s
ab initio Hartree-Fock treatment of zirconia within the effec- L o=
tive core potentialECP) approximatior?> i o
Table 11l shows the total energies of the pure phases. The 0 PowmM
energies quoted are cohesive energies, i.e., differences of to- i 0d
tal energies per molecular unit and the energies of the con- Obree bt e e e by e b e b
stituent pseudoatoms. We find that the ordering of the cohe- -30 -20 -10 0 10 20
sive energies follows the one suggested by their temperature Energy (eV)
ordering:

FIG. 2. Angular resolved local density of states of cubic zirco-
En<E<E.. (13)  nia. The zero of the axis is the Fermi level.
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FIG. 3. Band structure of cubic zirconia. Continuous lines rep-
resent the LDA band structure, while dots show &%/ quasipar-
ticle bands. The two sets of bands are aligned at the top of th%u
valence band, which was set to 0.

FIG. 4. Quasiparticle correction versus LDA band energy for
bic zirconia. The zero of the energy is set at the top of the valence
band.

that there are no Zs- andd-character states in the valence
bands(except for the deep semicore Zs dtates, which are
not shown. This suggests a nearly complete transfer of th

are for a 9.5 mol % YOs-stabilized single crystal cubic
ZrO, sample. While pure cubic zirconia has an experimental
i Sattice constant(obtained from extrapolation from high-
Zr 5s and 4l electrons ,to the oxygen atoms in the crystal. temperature valugof 9.619 a.u., the stabilized sample had
For the GW calculation, the LDA wave functiongn.,  5_9719 a.u. Repeating the calculation at the larger lattice

and energieg,, are obtained using semilocal pseudopoten-.,stant yields a gap that is 0.1 eV smaller and anfO 2

tials, .., not the fully separable Kleinman-Bylander pseudoygience band that is 0.3 eV narrower. The theoretical DOS
potentials. This comes at a performance cost, but gives us t

- ) - %rves shown in Fig. 5, calculated for a pure sample at
advantage of avoiding the issue of ghost states in the con- g P P

duction band. Bands up to energies 250 eV above the fund 9.619, are broadened by the experimental resolution of 0.7
mental gap are included in the summation over conduction
bands. The wave functions are expanded up to a plane-wa\fﬁ
cutoff of 60 Ry. The quasiparticle energies and the gaps werg
fully converged at this cutoff(We find that at 40 Ry the
guasiparticle energies are converged to 0.2 eV, and the ga
are systematically underestimated by 0.15)élhe dielectric

In the energy range shown, the three main features in the
eoretical curve are the Op2valence and the O2and Zr
p semicore bands. Th&W correction proves to be very
important in obtaining the correct peak positions for the
R&micore states. In particular, a shift-ef 2 eV is observed
. . for the O & peak. The valence bandwidth is slightly in-
congtant is computed t0 a rgmprpcal space cutoff of 4 aU. creased by the quasiparticle correction, and agrees well with
. F'g'.“'re 3 shows the qua3|part|cle band stru_ctu_re of CUbI(fhe experiment. The experimental feature markedprhéas
Zirconia. The.self-e.nerg|es qf states at genérpoints are een identified as impurity related by examining spectra with
obtained by linear interpolation of the calculated values agifferent dopant concentrations. Based on our calculations,

nearby high-symmetry points of the Brillouin zone. See RefWe are unable to identify features A and B with any structure

3 f_or the notation for all of the high-symmetry points in _th_e in the electronic structure of pure cubic ZsOThus we pro-
Brillouin zones for the cubic, tetragonal, and monoclinic

phases. We observe, due to the self-energy correction, a Iov{:/)—0 se that they are also defect related.

ering and widening of the O 2 valence band and an ap- N —
proximate constant “scissors” shift upward of the conduc- Nz ! .les
tion bands. The minimum gap is indirect frofto I" in both

the LDA andGW calculations.

Figure 4 shows the quasiparticle corrections to the LDA
eigenvalues for the cubic phase. The corrections to the va-
lence band follows very closely the trend seen in other
semiconductor§.There is also a lowering of energy. How-
ever, this may be due to inconsistent comparison of Ceperly-
Alder exchange correlation witls W exchange-correlation.
The lowest conduction band is corrected uniformly over the
Brillouin zone with a state dependence of about 0.1 eV.
Higher conduction bands show nonuniform state-dependent
corrections with up to about 1 eV variation over the Brillouin
Zone. FIG. 5. Comparison of calculated and experimental valence den-

In Fig. 5, we compare our theoretical valence band density of stateDOS). The experimental valug arbitrary unit$ are
sity of states with the x-ray photoemission sped¥®S  from the XPS measurements of Ref. 3. The calculated density of
measured by Frencét al® The experimental results shown states are given in units of states/unit cell/spin/eV.

DOS

—— LDA

O = N W s

IS8 LLEANRRRRN RRRRY LERN

1 | 111 | 1111 I 111 1 | 11
-30 -20 -10 0
Energy (eV)
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TABLE V. Valence band maxim&/BM) and conduction band
minima (CBM) of tetragonal ZrQ at selected high-symmetry
points of the Brillouin zone. The calculations were carried out at 40
Ry plane wave cutoff. Th6&W estimate column shows the calcu-

lation of the tetragonal bandgap using the energy-depen@shit =
correction obtained from a 40 Ry calculation in the cubic phase. %
The LDA energy of the VBM at th& point has been set to zero. il
]
=
k point LDA(AORYy GWHA40 Ry GW estimate =
r VBM —0.03 —1.28 —-1.23
CBM 4.01 5.12 5.06
z VBM 0.00 -1.19 —-1.20 S VT ) v
CBM 4.60 5.79 5.65 >
R VBM —0.82 212 209 FIG. 7. GW quasiparticle band structure of monoclinic zirconia.
(See tex.
CBM 4.55 5.68 5.60
X VBM —0.03 —1.26 —1.23 Both phases are wide bandgap semiconductors, with an indi-
CBM 4.44 551 5.49 rect fundamental gap. The minimum of the conduction band
is atI” for both phases, and the minimum opti¢direct gap
M VBM —0.56 —-1.78 —-1l81 is also located at the zone center. The valence band maxima
CBM 5.19 6.45 6.24 fall on the X symmetry line(betweenI’ and M) for the
tetragonal phase and betweEnand X for the monoclinic
phase.

2. Tetragonal and monoclinic phases

Performing a fully converge@W calculation on the te- 3. Band gaps and bandwidths

tragonal and monoclinic phases of zirconia would be too e present our calculated minimum bandgaps and va-
expensive computationally. Instead, we only compute anence bandwidths in Table V. Our LDA values are in reason-
LDA band structure for these phaséat the experimental aple overall agreement with the earlier results of Zandiehna-
structurg and use theécW self-energy corrections obtained gem, Murray, and Ching’ Since these 1988 results were
in the cubic phase to correct the LDA eigenvalues. In thiscomputed non-self-consistently for the tetragonal and mono-
scheme, we assume that for all phases of Ztli@ quasipar-  clinic phases, we do not expect them to agree closely with
ticle correction of the energy of any state is given by thegyr self-consistent results.
interpolation curves in Fig. 4. All states at the same energy Both the bandwidths and the bandgaps are systematically
are treated as having the sai@&V quasiparticle correction, overestimated in the Hartree-Fo¢dF) calculations of Or-
which amounts to neglecting dependence at —V,.. This  |andoet al* This is not surprising, as it is well known that
approximation reproduces the quasiparticle correction to betF calculations systematically overestimate and LDA calcu-
ter than 0.05 eV accuracy near the gage Fig. 4in the  |ations underestimate the fundamental gap of semiconduc-
cubic phase. Test calculations in which we compare the intors. Indeed, ouGW results, which agree well with experi-
terpolation formula with the exa& W results for the tetrag- ment, are between the LDA and HF values for both the
onal phase at a lower, computationally feasible cutoff, confundamental gap and the valence bandwidth.
firm the applicability of this approximatiofsee Table IV. Table VI shows the gaps as measured by vacuum ultra-
Figures 6 and 7 show théW quasiparticle band struc- violet (VUV) spectroscopy.These gaps were derived from
tures of the tetragonal and monoclinic phases, respectivelyeflectance spectra through Kramers-Kréhignalysis. The

[ T, n TABLE V. Minimum band gaps and valence bandwidtfis
10 a5, '=;I;§=;' i eV) of ZrO, compared to otheab initio calculations.
1»-:". ‘e, ve. :l'.o.'.! ‘g‘
ES I e e This work
% il Phase LDA GW HF? LCAQP
& i Band gap cubic 3.25 555 123 3.84
E C tetragonal  4.10 6.40 133 4.11
= 0 frmmr monoclinic  3.12 5.42 451
;. Valence bandwidth cubic 61 65 797 590
5 b 3 tetragonal 54 59 7.14 5.48
- monoclinic 52 5.7 4.97

X N M X

—
N
v,

@Ab initio Hartree-Fock calculation from Ref. 4.
FIG. 6. GW quasiparticle band structure of tetragonal zirconia.°Ab initio orthogonalized LCAO DFT-LDA calculation from Ref.
(See tex?. 30. Only the cubic phase was computed self-consistently.
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TABLE VI. Minimum band gaps of Zr@ compared to experi-
ments.

Phase LDA GW Expt.

cubic direct 3.65 5.81 6.1-7.88
indirect 3.25 5.55

tetragonal direct 4.26 6.57 5.78-6%2
indirect 4.10 6.40

monoclinic direct 3.16 5.46 5.83-799
indirect 3.12 5.42

&Cubic Zr0,:9.5 mol% Y,Os, from Ref. 3.
bTetragonal Zr@:4.5 mol% Y,O,, from Ref. 3.
“Monaclinic ZrO,, from Ref. 3.

gaps extracted are sensitive to the details of the fitting pro- G
cedure used. The range of experimental values indicated in

Table VI corresponds to two different fits of the reflectance O Zirconium
spectra, hence we estimate the experimental uncertainty to be
as much as 1 eV. @ Oxygen
It has also been suggested in Ref. 3 that gaps derived from
VUV reflectance spectroscopy are too high. This observation (O Oxygen Vacancy

is confirmed by photocurrent generation spectroscéfhe
latter method gives a gap value of 4.8 eV for anodic thin
films of ZrO, of undetermined structure. While surface and o ) o
defect effects could be important in the interpretation of this '€ vacancy state, indicated by the dashed line, is singly
latter measurement, the results of the photocurrent experflégenerate, fully occupied, and well separated from both the
ment suggest that the VUV data might be too high. valence bands apd Fhe con(_ductlon b_ands. Its dlspers_lon
Table VI also shows LDA an@W values for the gaps. thrc_Jughout the Brllloum zone is approx!mately_l eV, indi-
We find that theGW approximation improves agreement be- cating an appreciable vacancy-vacancy interaction. We make
tween theory and experiment considerably. While @/  the following observations to explain the above vacancy
gaps are within the experimental uncertainty of the measureff@nd structure in a tight-binding picture. First, by removing

values, differences in the gap value for the different phase&n 0Xygen atom, we remove the G-znd 2-like orbitals
are not resolved experimentally. previously present at the vacancy site. Therefore, if in the

folded Brillouin zone scheme for the pure crystal, there are
(8% 3) O 2p and(8x 1) O Zs filled bands, we expect there to
be (7x3) O 2p and(7x1) O 1s filled bands in the crystal

In practical applications, zirconia is typically doped in supercell with oxygen vacancy, which is precisely the result
such a way as to introduce oxygen vacancies into the crystaye obtain. Second, in the crystal, the O atoms borrow ap-
structure. This is because not only are oxygen vacancies r@roximately two electrons from the surrounding four Zr at-
sponsible for the oxygen-ion conducting properties of thisoms. Thus, by removing an oxygen atom, we remove six
material, dopants also endow zirconia with improved me-€lectrons, leaving two electrons behind which occupy the
chanical properties?

To study the nature of oxygen vacancies in cubic zirconia,
we perform calculations on a supercell of seven oxygen at- : e
oms and four zirconium atoms, obtained by removing an
oxygen atom from the conventional cell of cubic zirconia, T~ o
shown in Fig. 8. Such a supercell consists of four formula
units of ZrO, with one less oxygen atom and is four times
the volume of the primitive cell of pure, cubic zirconia. We
allow the internal coordinates of this supercell to relax while .
keeping the cell volume fixed at the experimental pure bulk PR I SR I S
cubic volume. The initial configuration of the relaxation is red i ., RN
obtained by taking the above supercell and distorting it r c. R
asymmetrically. We find that the crystal relaxes to a symmet- r 1
ric structure, with the Zr atoms moving a distance of 0.015 -10 (111) (000) (100)

A directly away from the vacancy. The LDA relaxations
were carried out with a plane wave cutoff of 100 Ry and a  FIG. 9. LDA band structure of cubic zirconia with an oxygen
2X2X2 Monkhorst-Pack grid in the Brillouin zone. vacancy in a cubic supercell containing four formula units. The

Figure 9 shows the LDA band structure of the supercelldashed band is composed of states localized at the vacancy site.

FIG. 8. Supercell used in the vacancy calculation.

V. OXYGEN VACANCY

Energy(eV)

|
oy
I

-
® s om o s s
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FIG. 10. Schematic representation of thedZorbitals that give

the dominant contribution to the vacancy state. FIG. 12. Isosurface of the square of the vacancy wave function

singly degenerate vacancy state. The two electrons whicft/Perimposed on a22x1 ball and stick model of the atoms and

once filled the O p-like states in the pure crystal, and which bonds. Th_e four large balloon-shaped structures are localized on the
now fill the newly created vacancy band, can be thought oyacancy sites and form a large part of the isosurface. The large balls
as moving back to the four surrounding Zr atoms and c)Ccugﬁdjacent to the rings and the rings themselves comprise the remain-
pying a linear combination of orbitals on the Zr atoms. Sincgd Part of the vacancy isosurface. The balls surrounded by rings
the vacancy state & belongs to the\1 representation of the are the zirconium atoms, and the tetrahedrally coordinated balls are

. th toms.
tetragonal symmetry of the vacancy site, we can conclude © oxygen atoms
that the vacancy state issymmetricsuperposition of these
y ¥ perp In order to extract the energy of the defect level and sub-

four orbitals. . .
The vacancy state is formed as a symmetric superpositio}LaCt the effect of the vacancy-vacancy interaction, we model
the vacancy band obtained in the supercell approach with a

of in particular the 4l orbitals centered at the four Zr atoms . - . . .

surrounding the vacancy, as shown in Fig. 10. There are tWtht—bmdmg model that_ includes the Interaction of nearest

reasons that lead to this conclusion. First, the partial densit nd second-nearest ne|ghb.or vacancy S|_tes. We cannot ne-

of states plot given in Fig. 11 shows that the vacancy stat lect the second-nearest neighbor vacancies because they are
separated by only four bonds, the same number of bonds that

has very little Zrs and p character. Second, a plot of the te th t neiahb tes. W lect i
square of the vacancy wave functighig. 12 shows the Separate the nearest neighbor vacancy sites. e negiect in-
teractions between third-nearest neighbors in our tight-

haracteristi h round the Zr ms. This pl I - . .
characteristial,2 shape around the Zr atoms S plot asOlalndmg analysis since these are separated by six bonds.

reveals that the vacancy state is indeed mostly localized o : :
; In our supercell scheme the vacancy sites form a simple
the vacancy site. ) ) . , .
cubic lattice. Assuming first and second nearest neighbors

= ﬂ\ Total )"W and a singles-like (Al) state at the simple cubic sites, we
oL can model the vacancy-state dispersion by
N Zr s
~ 0 2 E(k)=Eq+A4[cogk,a) +cogk,a) +cogk,a)]
-
5 oL . lrp +A,[ cogk,a)cog kya) + cog kya)cog k,a)
£ . - Zr d AMJ +cogk,a)cogk,a)], (15)
2 r N ﬂ\ 0s | whereEy, A;, and A, are fitting parameters and is the
2 0F lattice constant of the supercell. It is possible to fit this tight-
0 B . Op )WW’\ ) binding dispersion curve to the LDA energies of the vacancy
= band to better than 0.08 eV. The fact that the tight-binding
N 0d L] dispersion curve agrees well with the LDA results shows that
30 -20  -10 o the vacancy-vacancy interaction is sufficiently weak and

therefore that the supercell approximation is a sensible ap-
proach to the problem of determining the energy of an iso-

FIG. 11. Partial density of states of cubic Zr@ith an oxygen lated vacancy state. The paramefgris our estimate of the
vacancy. position of the vacancy level in the dilute limit.

Energy (eV)
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2 L A L L L slightly smaller than those of the bulk cubic phase. The bulk
S O R N D AN B A valence to conduction band gap in this periodic array of va-
S R O A A cancies is found to be 5.2 eV.
- et e
N 1 O A B VI CONCLUSION
= J Y ] A A In conclusion, we have performed full structural relax-
n R R N ations of the cubic, tetragonal, and monoclinic phases of zir-
m% Lj‘ f LJ conia within a plane-wave pseudopotential DFT-LDA
SN NP AN T TN R A A method. We find excellent agreement for the structural pa-
NN RN rameters with experimental measurements and athémitio
ISR O R S I A calculations. We find that the relaxed crystals do have the
P N N VY A expected total energy ordering, and the energy differences
-8 —4 -2 0 P between different phases agree well with experiment.
Ep. (eV) We also performed a quasiparticle electronic-structure

calculation on zirconia. Th&W approximation employed
FIG. 13. GW quasiparticle corrections to the LDA energies for here opens up the LDA gaps by approximately 2.3 eV
zirconia with an oxygen vacancy. The empty square shows the pahroyughout the Brillouin zone. We predict the fundamental
sition of the isolated vacancy obtained from tight-binding analysisg‘.ip of pure cubic, tetragonal, and monoclinic zirconia to be
(see text 5.55, 6.40, and 5.42 eV, respectively. The singly degenerate

L ) occupied oxygen vacancy level in the cubic phase is found to
We performed an LDA and a quasiparticle calculation ofjyo 21 eV below the conduction band minimum.

the vacancy band structure at the plane-wave cutoff of 40 Ry oy studies presented here form the basis of a further
and a 22x2 Monkhorst-Packk-point grid. As we have jnyestigation of the electronic properties of defects in zirco-
seen inGW calculations for the pure cubic phase, this cutoffia \which are known to be responsible for the stabilization
gives eigenvalues converged to better than 0.2 eV. UPOG the cubic and tetragonal phases at room temperature. In
performing the tight-binding analysis outlined above, theparticular, supercell calculations on impurity-doped systems
quasiparticle vacancy level is found to be 2.1 eV below th&g enyisioned GW calculations on such systems could pro-

conduction band minimum. The vacancy level, as with the;ije additional important information concerning the
bulk valence-band conduction bands, is shifted down. This '%xygen-ion conducting and catalytic properties of defect-

expected, since the vacancy level is occupied. stabilized cubic zirconia.

The applicability of our calculation of the oxygen vacancy
state to realistic systems is limited by the fact that, in realis-
tic doped zirconia, the oxygen vacancies are accompanied by
substitutional impurities such as Ca or Y atoms on Zr sites. The authors would like to acknowledge helpful discus-
Indeed, if each oxygen vacancy were accompanied by onsions with Bernd Pfrommer and Dr. Angel Rubio. We also
divalent(such as Ca or Mgor two trivalent(such as Yions  thank Frederic Bouyer for bringing the problem of the elec-
replacing Zr ions, the vacancy level would not be occupiedtronic structure of zirconia to our attention. This work was
barring changes to the band structure. Calculations involvingupported by National Science Foundation Grant No. DMR-
supercells with such impurities included are under way t®520554 and by the Director, Office of Energy Research,
assess their effect. Office of Basic Energy Sciences, Materials Sciences Divi-

We also computed the quasiparticle corrections for statesion of the U.S. Department of Energy under Contract No.
at high-symmetry points in the Brillouin zone for bands nearDE-AC03-76SF00098. Cray C90 computer time was pro-
the Fermi level for the vacancy supercell system. Figure 1¥ided by the National Science Foundation at the Pittsburgh
shows the quasiparticle correction versus the LDA eigenvalSupercomputer Center, the Cornell Supercomputer Center,
ues. The bulk states exhibit quasiparticle corrections that arend the NERSC Supercomputer Center.
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